3.2.66 \(\int \frac {\sin ^6(e+f x)}{(a+b \sin ^2(e+f x))^{5/2}} \, dx\) [166]

3.2.66.1 Optimal result
3.2.66.2 Mathematica [A] (verified)
3.2.66.3 Rubi [A] (verified)
3.2.66.4 Maple [B] (verified)
3.2.66.5 Fricas [F]
3.2.66.6 Sympy [F(-1)]
3.2.66.7 Maxima [F]
3.2.66.8 Giac [F]
3.2.66.9 Mupad [F(-1)]

3.2.66.1 Optimal result

Integrand size = 25, antiderivative size = 285 \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=\frac {a \cos (e+f x) \sin ^3(e+f x)}{3 b (a+b) f \left (a+b \sin ^2(e+f x)\right )^{3/2}}+\frac {2 a (2 a+3 b) \cos (e+f x) \sin (e+f x)}{3 b^2 (a+b)^2 f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\left (8 a^2+13 a b+3 b^2\right ) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 b^3 (a+b)^2 f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {a (8 a+9 b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{3 b^3 (a+b) f \sqrt {a+b \sin ^2(e+f x)}} \]

output
1/3*a*cos(f*x+e)*sin(f*x+e)^3/b/(a+b)/f/(a+b*sin(f*x+e)^2)^(3/2)+2/3*a*(2* 
a+3*b)*cos(f*x+e)*sin(f*x+e)/b^2/(a+b)^2/f/(a+b*sin(f*x+e)^2)^(1/2)+1/3*(8 
*a^2+13*a*b+3*b^2)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+ 
e)^2)^(1/2)*(a+b*sin(f*x+e)^2)^(1/2)/b^3/(a+b)^2/f/(1+b*sin(f*x+e)^2/a)^(1 
/2)-1/3*a*(8*a+9*b)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x 
+e)^2)^(1/2)*(1+b*sin(f*x+e)^2/a)^(1/2)/b^3/(a+b)/f/(a+b*sin(f*x+e)^2)^(1/ 
2)
 
3.2.66.2 Mathematica [A] (verified)

Time = 1.66 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.67 \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=-\frac {a \left (-2 a \left (8 a^2+13 a b+3 b^2\right ) \left (\frac {2 a+b-b \cos (2 (e+f x))}{a}\right )^{3/2} E\left (e+f x\left |-\frac {b}{a}\right .\right )+2 a \left (8 a^2+17 a b+9 b^2\right ) \left (\frac {2 a+b-b \cos (2 (e+f x))}{a}\right )^{3/2} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )+\sqrt {2} b \left (-8 a^2-17 a b-7 b^2+b (5 a+7 b) \cos (2 (e+f x))\right ) \sin (2 (e+f x))\right )}{6 b^3 (a+b)^2 f (2 a+b-b \cos (2 (e+f x)))^{3/2}} \]

input
Integrate[Sin[e + f*x]^6/(a + b*Sin[e + f*x]^2)^(5/2),x]
 
output
-1/6*(a*(-2*a*(8*a^2 + 13*a*b + 3*b^2)*((2*a + b - b*Cos[2*(e + f*x)])/a)^ 
(3/2)*EllipticE[e + f*x, -(b/a)] + 2*a*(8*a^2 + 17*a*b + 9*b^2)*((2*a + b 
- b*Cos[2*(e + f*x)])/a)^(3/2)*EllipticF[e + f*x, -(b/a)] + Sqrt[2]*b*(-8* 
a^2 - 17*a*b - 7*b^2 + b*(5*a + 7*b)*Cos[2*(e + f*x)])*Sin[2*(e + f*x)]))/ 
(b^3*(a + b)^2*f*(2*a + b - b*Cos[2*(e + f*x)])^(3/2))
 
3.2.66.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 288, normalized size of antiderivative = 1.01, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3667, 372, 440, 399, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (e+f x)^6}{\left (a+b \sin (e+f x)^2\right )^{5/2}}dx\)

\(\Big \downarrow \) 3667

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \int \frac {\sin ^6(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \left (b \sin ^2(e+f x)+a\right )^{5/2}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 372

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{3 b (a+b) \left (a+b \sin ^2(e+f x)\right )^{3/2}}-\frac {\int \frac {\sin ^2(e+f x) \left (3 a-(4 a+3 b) \sin ^2(e+f x)\right )}{\sqrt {1-\sin ^2(e+f x)} \left (b \sin ^2(e+f x)+a\right )^{3/2}}d\sin (e+f x)}{3 b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 440

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{3 b (a+b) \left (a+b \sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {\int \frac {2 a (2 a+3 b)-\left (8 a^2+13 b a+3 b^2\right ) \sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{b (a+b)}-\frac {2 a (2 a+3 b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}}{3 b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{3 b (a+b) \left (a+b \sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {\frac {a (a+b) (8 a+9 b) \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{b}-\frac {\left (8 a^2+13 a b+3 b^2\right ) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}}{b (a+b)}-\frac {2 a (2 a+3 b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}}{3 b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{3 b (a+b) \left (a+b \sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {\frac {a (a+b) (8 a+9 b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}d\sin (e+f x)}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (8 a^2+13 a b+3 b^2\right ) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}}{b (a+b)}-\frac {2 a (2 a+3 b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}}{3 b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{3 b (a+b) \left (a+b \sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {\frac {a (a+b) (8 a+9 b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (8 a^2+13 a b+3 b^2\right ) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}}{b (a+b)}-\frac {2 a (2 a+3 b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}}{3 b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{3 b (a+b) \left (a+b \sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {\frac {a (a+b) (8 a+9 b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (8 a^2+13 a b+3 b^2\right ) \sqrt {a+b \sin ^2(e+f x)} \int \frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}}{b (a+b)}-\frac {2 a (2 a+3 b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}}{3 b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{3 b (a+b) \left (a+b \sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {\frac {a (a+b) (8 a+9 b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (8 a^2+13 a b+3 b^2\right ) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}}{b (a+b)}-\frac {2 a (2 a+3 b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}}{3 b (a+b)}\right )}{f}\)

input
Int[Sin[e + f*x]^6/(a + b*Sin[e + f*x]^2)^(5/2),x]
 
output
(Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*((a*Sin[e + f*x]^3*Sqrt[1 - Sin[e + f*x 
]^2])/(3*b*(a + b)*(a + b*Sin[e + f*x]^2)^(3/2)) - ((-2*a*(2*a + 3*b)*Sin[ 
e + f*x]*Sqrt[1 - Sin[e + f*x]^2])/(b*(a + b)*Sqrt[a + b*Sin[e + f*x]^2]) 
+ (-(((8*a^2 + 13*a*b + 3*b^2)*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sqr 
t[a + b*Sin[e + f*x]^2])/(b*Sqrt[1 + (b*Sin[e + f*x]^2)/a])) + (a*(a + b)* 
(8*a + 9*b)*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[1 + (b*Sin[e + f* 
x]^2)/a])/(b*Sqrt[a + b*Sin[e + f*x]^2]))/(b*(a + b)))/(3*b*(a + b))))/f
 

3.2.66.3.1 Defintions of rubi rules used

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 372
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-a)*e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2 
)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] + Simp[e^4/(2*b*(b*c - a*d)*(p + 1 
))   Int[(e*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[a*c*(m - 3) + 
 (a*d*(m + 2*q - 1) + 2*b*c*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, 
e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 3] && IntBinomialQ[a 
, b, c, d, e, m, 2, p, q, x]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 440
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[g*(b*e - a*f)*(g*x)^(m - 1)*(a + 
 b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] - Simp[ 
g^2/(2*b*(b*c - a*d)*(p + 1))   Int[(g*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + 
d*x^2)^q*Simp[c*(b*e - a*f)*(m - 1) + (d*(b*e - a*f)*(m + 2*q + 1) - b*2*(c 
*f - d*e)*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, q}, x] && 
 LtQ[p, -1] && GtQ[m, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3667
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^( 
p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff^(m + 1 
)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x]))   Subst[Int[x^m*((a + b*ff^2*x^2) 
^p/Sqrt[1 - ff^2*x^2]), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, 
p}, x] && IntegerQ[m/2] &&  !IntegerQ[p]
 
3.2.66.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(697\) vs. \(2(263)=526\).

Time = 3.98 (sec) , antiderivative size = 698, normalized size of antiderivative = 2.45

method result size
default \(-\frac {\left (\left (5 a \,b^{2}+7 b^{3}\right ) \left (\cos ^{4}\left (f x +e \right )\right ) \sin \left (f x +e \right )+\left (-4 a^{2} b -11 a \,b^{2}-7 b^{3}\right ) \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-\sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, b \left (8 F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2}+17 F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a b +9 F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b^{2}-8 E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2}-13 E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a b -3 E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b^{2}\right ) \left (\cos ^{2}\left (f x +e \right )\right )+8 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{3}+25 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2} b +26 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a \,b^{2}+9 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b^{3}-8 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{3}-21 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2} b -16 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a \,b^{2}-3 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b^{3}\right ) a}{3 {\left (a +b \left (\sin ^{2}\left (f x +e \right )\right )\right )}^{\frac {3}{2}} \left (a +b \right )^{2} b^{3} \cos \left (f x +e \right ) f}\) \(698\)

input
int(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/3*((5*a*b^2+7*b^3)*cos(f*x+e)^4*sin(f*x+e)+(-4*a^2*b-11*a*b^2-7*b^3)*co 
s(f*x+e)^2*sin(f*x+e)-(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*(cos(f*x+e)^2)^(1/ 
2)*b*(8*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a^2+17*EllipticF(sin(f*x+e),( 
-1/a*b)^(1/2))*a*b+9*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b^2-8*EllipticE( 
sin(f*x+e),(-1/a*b)^(1/2))*a^2-13*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a*b 
-3*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*b^2)*cos(f*x+e)^2+8*(cos(f*x+e)^2) 
^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/ 
2))*a^3+25*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*Elliptic 
F(sin(f*x+e),(-1/a*b)^(1/2))*a^2*b+26*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e 
)^2+(a+b)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a*b^2+9*(cos(f*x+e 
)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b) 
^(1/2))*b^3-8*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*Ellip 
ticE(sin(f*x+e),(-1/a*b)^(1/2))*a^3-21*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+ 
e)^2+(a+b)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a^2*b-16*(cos(f*x 
+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a* 
b)^(1/2))*a*b^2-3*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*E 
llipticE(sin(f*x+e),(-1/a*b)^(1/2))*b^3)*a/(a+b*sin(f*x+e)^2)^(3/2)/(a+b)^ 
2/b^3/cos(f*x+e)/f
 
3.2.66.5 Fricas [F]

\[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(5/2),x, algorithm="fricas")
 
output
integral((cos(f*x + e)^6 - 3*cos(f*x + e)^4 + 3*cos(f*x + e)^2 - 1)*sqrt(- 
b*cos(f*x + e)^2 + a + b)/(b^3*cos(f*x + e)^6 - 3*(a*b^2 + b^3)*cos(f*x + 
e)^4 - a^3 - 3*a^2*b - 3*a*b^2 - b^3 + 3*(a^2*b + 2*a*b^2 + b^3)*cos(f*x + 
 e)^2), x)
 
3.2.66.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=\text {Timed out} \]

input
integrate(sin(f*x+e)**6/(a+b*sin(f*x+e)**2)**(5/2),x)
 
output
Timed out
 
3.2.66.7 Maxima [F]

\[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(5/2),x, algorithm="maxima")
 
output
integrate(sin(f*x + e)^6/(b*sin(f*x + e)^2 + a)^(5/2), x)
 
3.2.66.8 Giac [F]

\[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(5/2),x, algorithm="giac")
 
output
sage0*x
 
3.2.66.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^6}{{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{5/2}} \,d x \]

input
int(sin(e + f*x)^6/(a + b*sin(e + f*x)^2)^(5/2),x)
 
output
int(sin(e + f*x)^6/(a + b*sin(e + f*x)^2)^(5/2), x)